Sounds natural

MCタイチ 音楽サイト

平均律と純正律

【公開】2009-02-02 【修正】2017-03-08

和声学とかコード理論をやり始めると、基になっている音階の成り立ち、つまり周波数的にどのような並びなのか気になります。

中東やアジアの音階は別として、ドレミファ・・・の西洋音階だけでも、大きく分けて平均律と純正律というのを聞いたことが有ると思います。これらは音階というより音律(チューニング方法)ですが、数学的には全く違った考え方で構成されています。

よってこのページでは、平均律と純正律の周波数比や実際の響きについて見ていきたいと思います。

平均律

現代の鍵盤楽器、およびギターなどフレット付きの弦楽器は、この平均律でチューニングされています。従って、現代の音楽理論や作曲法なども、基本的にはこの平均律を前提にしています。

平均律の数比

周波数比は、先ず基音Cから周波数比が2倍の音C'を取り、これをオクターブとします。実はここまでは、古今東西殆どの音階で同じです。この周波数比2:1という音程は当然よく調和するのですが、調和しすぎて和音というより同一の音と見なされます。

さて、平均律ではこのオクターブを12等分してその1個分を半音とします(よって正確には「12平均律」)。そしてこの半音の2倍が全音。この半音と全音を使って、C,D,E....と音階を作っていきます。ご存知のように、E-F間とB-C’間のみが半音で、残りは全て全音です。

ここで注意して欲しいのは、「等分」と書きましたが周波数が等間隔で並んでいる訳ではありません。等間隔に聞こえる音階は周波数「比」が一定(=等比数列)なのです。つまりオクターブを12等分して出来た半音とは、12回かけたら2になる数値(=2^1/12)です。

長所と短所

どの音程も半音の整数個分ですから、度数が同じならどこをとっても全く同じ音程です。その結果、どんな調で演奏しても音同士の相対関係は同じ。完全な平行移動が出来るという訳です。

反面、オクターブ以外はどの音程も簡単な整数比にはならないので、和音が若干にごる事になります。具体的には後述の表を見てください。

純正律の周波数

「純正」な音程とは「2つの音の周波数が単純な数比になる」と言う意味で、純正律とは純正な音程を積み重ねて行くことで作られる音律です。

どの音程を「純正」にするかによって歴史上様々な音律が存在ましたが、ここではその代表的な音律「ツァルリーノ音律」を紹介します。一般的に純正律というとこの音律をさすようなので、今後は単に「純正律」と呼ぶ事にします。

純正律の周波数比

周波数比を見ていくと、まずオクターブの関係C-C'は平均律と同じ1:2です。次に、Cから周波数2:3で上がった音をGとします(純正5度)。逆にC’から2:3で下がった音をFとします。

そこでFとGの比率を計算してみると、8:9になります。案外すっきりした比率なので、とりあえずこれを2度(全音)の関係としておきます。また、C-F間を計算すると3:4、同様にG-C'間も3:4、これを4度とします。

次は、長3度としてC-E間を4:5に設定します。そして、C-D間は上記F-G間の全音を採用し8:9とします。その結果、隣のD-E間はどうなったか計算すると9:10です。同じ全音なのにC-DとD-Eでは微妙に違いますね。このように純正律では長短2種類の全音があるのです。長い方(8:9)を大全音と呼び、短いほう(9:10)を小全音と呼びます。

次に隣のE-F間を計算してみると15:16で、これが半音になります。しかし、この半音を2個分は(2乗しても)大全音にも小全音にもなりません(少し小さい)。つまり、純正律の半音は全音の半分ではありません。「半端な音程」くらいの意味でしょうか。よって、平均律では例えばC♯とD♭は同じ音ですが、純正律では違う音になります。

さて、残るはAとBです。Gから小全音上がった音をAとすると、C-A間は3:5とキリが良い数字になりこれが6度です。更にAから大全音あがった音をBとすると、B-C'間は15:16で先ほどの半音と同じです。めでたしめでたし。

長所と短所

ごらんのように、純正律の音程は見事に整数比の関係なので、当然綺麗にハモリます。ところが、そうでない音程も存在するのです。例えば、完全5度の筈のD-Aの周波数を計算すると27:40と言う複雑な数比になります。

なぜ同じ5度なのに音程が違うのか?それは、C-G間をC-D-E-F-Gにばらして考えると、大全音+小全音+半音+大全音で構成されています(これが純正)。しかし一方、D-A間は小全音+半音+大全音+小全音なので、大全音が一個少なく代わりに小全音が1個多いのです。

後述しますが、このD-A間の「少し小さめの5度」は聴いてはっきり判るほど濁ります。平均律の5度のような微妙な濁りではありません。Ⅱmコードですら濁って使えないとなると、現代のジャズやポップスは勿論、所謂クラシック音楽もほぼ全滅ですね。実際、バッハ以降でよく名前が上がるのは、ツァルリーノ音律ではありません(これについては別の機会に)。

というわけで、純正律と言っても特定の音の組み合わせが純正なのあって、それ以外の組み合わせでは非常に濁った音程が出来てしまうのです。

平均律と純正律の数値比較

それでは両音律の夫々の音の高さを比較してみましょう。

  純正律 平均律
C 1 1
D 1.125 1.122
E 1.25 1.26
F 1.333 1.335
G 1.5 1.498
A 1.667 1.682
B 1.875 1.888
C' 2 2

▲周波数比較(C=1とする)

左は周波数の数値表で(半音は除く)、右は半音を含めてグラフにしたものです。

グラフの縦軸の周波数は対数になっているので、各音の間隔(数比)が等しい平均律の音階は直線上に並んでいます(黄色の三角)。一方、各音の間隔が不揃いな純正律(青の四角)は、当然ながら直線上には乗りません。

一方和音(周波数比)に関しては、純正律を基準に見ていきます。先ず、E音が両者で結構違うということは、平均律のC-E音程が純正3度からずれているという事になります。平均律は3度が汚いと言われる所以はこのあたりにありそうです。他に、Aも結構ずれていて、これはCから6度(C'から短3度)の音程です。

一方、F(4度)やG(5度)では両者さほど変りません。この程度であれば、聴覚上殆ど影響がないと思われます。何れにせよ、純正律のD-Aのように明らかにズレた音程は平均律には見当たりません。

その他の平均律

このように平均律と純正律は全く違う考え方で作られています。それなのに、周波数的に微妙にズレるだけで済んでいるのは、逆に不思議に思いませんか?

実は12平均律以外の平均律(例えば15とか53平均律)も考案されましたが、実用的とはいい難いものでした。勿論オクターブ内で音が多いほど、演奏が難しいとか楽器が複雑になるからというのはありますが、そこを無視して純粋に数学的に考えても、最小単位の整数個分(整数乗)が単純な数比に近くなる分け方はあまり無かったようです。

その点12平均律は、分割数があまり多くない割には、2:3や3:4と言った単純な数比に近い音程が多く出せるという意味で稀有な存在だと思います。また12は約数が多い(2,3,4,6で割り切れる)ので、均等音階が多く作れますし。

平均率vs純正律聴き比べ

さていよいよ、実際に音を聞き比べてみます。まずはC(ハ長調)の音階(所謂、ドレミファ・・・)です。まずは平均律から・・・

平均律音階MP3

もちろん何の変哲もない、聴きなれた音階です。次は、純正律の音階です。

純正律音階MP3

どうですか?微妙にズレてる感じがしますよね。先ずAが低いのが目立ちます。そしてEも低いです。上のグラフの通り、純正律と差が大きい音ほど、音程が狂っていると感じます。

次にコードを弾いたらどうなるでしょうか?ハモリは純正律が得意な筈なんですが・・・

この楽譜の通り、ダイアトニックのトライアド(その調の音だけを使った3和音)を弾いてみました。先ずは平均律:

平均律3和音

これもよく聴く和音です。これが純正律だとどうなるでしょうか?:

純正律3和音

ん?これは!・・・2番目のDmが音痴というか怪しい響きですよね。これが上述の狭い5度です。ここまで濁るとやはり音楽の中で使えませんね。他の音は微妙といえば微妙なんですが、僕はEm,F,GそしてBdimが綺麗に響いているように聴こえました。

次の実験は中の3度を抜いた5度音程、所謂「パワーコード」です。簡単に言えば完全5度の音程です。半音も含めて全ての組み合わせを試しました。

楽譜にするとこんな感じです。何番目の音がどうだったかで覚えていてくださいね^^;

平均律5度

音がちょっと小さめになってしまいました。9番目のG#は一瞬唸ってるように錯覚しますが、発音タイミングが揃ってないようです。あとは、半音で均等に上がっていく感じです。次は純正律です。

純正律5度

これは!トライアドより粗が目立ちますね。先ず3番目のDは明らかに唸ってます。次のD#も怪しい。E、Fは良くて、次のF#(7番目)もかない怪しい。9番目のG#は上と同じ発音タイミングがずれてますが、音程も何だか怪しい。12番目のBとF#の組み合わせはとても綺麗に聴こえます。

皆さんはどう感じたでしょうか?僕の感覚と周波数と照らし合わせてどうかは、面倒なので全部は検証していません(^^;しかし、純正律の音程は所によってかなり酷い唸りになるのは間違いないようです。

楽器の種類と音律

現在は平均律が支配しているかのような論調もありますが、部分的には純正律になっている(又は演奏出来る)楽器も沢山あります。

まず、バイオリン族のようにフレットがない弦楽器は演奏者が自由に音の高さを変えられます(弦と弦の関係は固定されますが)。よって、どちらの音律も可能なんですが、純正律で演奏するようです。バイオリニストはピアノの音程に違和感を覚えるようですし、優れたバイオリニストはC♯とB♭の違いをきちんと弾き分け られると言います。聴衆がそれを聞き分けられるかどうかは別問題ですが。

他に、金管楽器はその構造上、5度が純正です。金管楽器ではピストンを何も押さない状態で、ド-ソ-ド-ソ‐ド・・・の音程を唇の緊張度で弾き分けます。これは楽器の固有振動数の整数倍の音が出ている訳ですから、まさしく「純正」の5度です。それ以外の音程は、トランペットのピストンやトロンボーンのスライドによって管の経路(全長)を変えて出します。

ただ、純正律はそれ自体濁る音程がある上に、各楽器でキーが違うわけですから、夫々が好き勝手な音律で演奏してたら、変な響きがあちこちで生まれる筈ですよね。オーケストラなんかは一体どういうキーや音律を基準にして、どうやって全体の辻褄を合わせているんでしょうね?

純正律オルガン

ちなみに、純正律の鍵盤楽器を作るとどうなるでしょうか?例えばC#とD♭は通常、表記は違えど同じ音で(異名同音)、これが黒鍵にあたります。しかし、純正律ではこのC#とD♭は違う音なので、CとBの白鍵の間に二つ黒鍵が必要になります。

純正律オルガン

そんな楽器を実際に作ってしまった人がいました→右図(浜松楽器博物館収蔵「純正律オルガン」)。鍵盤の高さ調整がぐちゃぐちゃですが、本当に黒鍵が何重にもなってますね。このように複雑怪奇な楽器を弾きこなせる人がいるんでしょうか?

このように、純正律で演奏する楽器は、濁る音程が来たときには微妙にピッチを変えて演奏できる事が前提になります。よって、鍵盤楽器のように出せる音が予め固定された楽器を、純正律で演奏するのは本質的に無理なんだと思います。

良い響き=簡単周波数比?

これまで「2つの音の周波数比が単純であるほど良く調和する=美しい」という前提で書いてきましたが、実はそれほど単純な話では無いのです。

数学的には整数比の音程からほんの僅かでもずれると(僅かであればあるほど)、たちまち超複雑な比率になります。しかし、人間が調律したり演奏する音程が、常に完璧なんてありえないですよね。そうすると、演奏中に音が強烈に濁ったり唸ったりする筈ですが、実際にはそんなことは起きません。

これはどういうことかというと、通常楽器の音には倍音(基音の整数倍)以外にも様々な周波数成分含まれているので、それらが協和して全体的に馴染んでしまうと言う説が有力のようです。逆に言えば、シンセなどで出すサインカーブに近い音(周波数成分が極めて少ない)ほど、純正でない音程の響きは怪しくなる筈です。

また、ピアノなどは音がすぐ減衰し、その過程で倍音も急激に変化するので和音の濁りがあまり目立ちません。一方、弦楽器や管楽器などで音を伸ばせる楽器は大抵ビブラートをかけるので、やはり濁りをごまかせる(濁る前に周波数を変えてしまう)と言えるでしょう。

ちなみに、ピアノの高音部の3本の弦は全く同じ高さにチューニングせず、僅かに(数セント単位で)ずらすそうです。その方が音が華やかになるから(ヤマハの解説)。どの程度のズレが一番気持良いかは人それぞれでしょうが、完全に同じ高さだと音がやや引っ込んで聴こえますよね。

和音も同じで、完全に協和するとしっくり来すぎて地味な響きになります。それが平均律の3和音だともっと派手な響きになり、7thだと更に複雑、テンションノートに至っては殆ど不協和音?みたいに鳴りますよね^^;このように音楽は安定と不安定の狭間を行き交うところに面白みがあるので、完全に安定した純正音程が出なくてもさほど問題にならないという事だと思います。

まとめ

純正律の長所である純正音程ですが、確かにコードを弾くと音が一塊になって出てくる感じはします。それと比較すると、平均律はちょっとぼやけた和音だと気づきます。しかしこれは、コーラスエフェクト(原音にピッチを僅かにずらした音を混ぜて広がりを出す)と同じ理屈で、広がり感があるとも言えます。

平均律が苦手とする3度だけを取り出して聴いていないので何ともいえませんが、少なくとも3和音で聴く限り、純正音程が平均律の音程に比べて、圧倒的に美しいとは正直感じませんでした。

一方、純正律の欠点は明確に認識できます。先ず、音階として聴くと、音程が狂っているとすぐに感じます。これは単に純正律に慣れているからではなく、音の並びが均等ではない事に対する違和感だと思います。

さらに酷いのが、純正音程以外の唸る音程です。これは純正律の3度のような、ごまかしの利く微妙なずれではありません。そしてこれは1箇所や2箇所ではありません。5度だけでも4箇所以上あったので、全ての音程では何箇所になるのか良くわかりません(^^;Ⅱmという重要なコードもNGという事からも、唸る音程を避けて曲を作るという事は考えられません。

よく「平均律は転調のし易さと引き換えに、美しい和音を失った」といった意見を見かけます。しかし、その対極としての純正律は「転調がしにくい」どころの騒ぎではありません。実際には「純正律は、一部の純正音程(和音)と引き換えに、その他の酷い音程という代償を払った」というのが正確でしょう。ちゃんと検証してみると、想像以上に実用に耐えないものでした。

従って、現実の音楽では、純正律(ツァルリーノ音律)を完全に守って演奏されるとは考えにくいです。微調整が利かない鍵盤楽器を純正律で調律する事はないし、オーケストラや合唱も「基本的には、純正音程で合わせて欲しいけど、唸るところは適当にぼやかしてね」みたいな演奏手法だと思います。純正律とは一種の理念であって、あまり突き詰めると破綻する種類のものと考えるべきでしょう。

そこで次回は、西洋音楽の歴史上存在した、12平均律でもツァルリーノ音律でもない、半純正ともいうべき音律について取り上げたいと思います。

Facebookアカウントでコメント